首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential Responses of Expressed Recombinant Human γ-Aminobutyric AcidA Receptors to Neurosteroids
Authors:Nancy C Lan  Kelvin W Gee  Michael B Bolger  Jie Sheng Chen
Institution:Department of Molecular Pharmacology, School of Pharmacy, University of Southern California, Los Angeles 90033.
Abstract:Neuroactive steroids, in particular 3 alpha-hydroxypregnanes, are allosteric modulators of the gamma-aminobutyric acidA (GABAA) receptor. Regionally selective expression of receptor subunit subtypes may account for differential responsiveness of tissues to GABAergic inhibition and neurosteroid modulatory effects. The effect of 5 alpha-pregnan-3 alpha-ol-20-one (epiallopregnanolone) on heterotropic cooperativity on the GABAA receptor complex has been studied in three subtypes of expressed recombinant human receptors and in rat brain and spinal cord. Steroid potentiation of 3H]flunitrazepam binding was greatest for the alpha 3 beta 1 gamma 2 receptor complex, whereas alpha 1 beta 1 gamma 2 and alpha 2 beta 1 gamma 2 complexes showed less than 100% enhancement in binding. Previous studies suggest that the spinal cord is devoid of alpha 1, whereas cerebellum is rich in alpha 1 subunits. Correspondingly, a differential enhancement of 3H]flunitrazepam binding in spinal cord (51%) versus cerebellum (28%) was also observed. The structure of neuroactive steroids is important in determinikng the extent of neuromodulatory activity. The 5 beta-pregnanes,5 beta-pregnan-3 alpha-ol-20-one (epipregnanolone) and 5 beta-pregnan-3 alpha,21-diol-20-one (5 beta-tetrahydrodeoxycorticosterone), were both less potent than their corresponding 5 alpha derivatives. A 3 alpha hydroxyl group is essential for neuromodulatory activity in the expressed receptors, as demonstrated by the observation that 5 alpha-pregnan-3 beta-ol-20-one (allopregnanolone) and 4-pregnen-3, 20-dione (progesterone) were both inactive.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:-γ-Aminobutyric acidA receptor  Neuroactive steroids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号