首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular mechanism for osmolyte protection of creatine kinase against guanidine denaturation.
Authors:W B Ou  Y D Park  H M Zhou
Affiliation:Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China.
Abstract:The effects of osmolytes, including dimethysulfoxide, sucrose, glycine and proline, on the unfolding and inactivation of guanidine-denatured creatine kinase were studied by observing the fluorescence emission spectra, the CD spectra and the inactivation of enzymatic activity. The results showed that low concentrations of dimethysulfoxide (< 40%), glycine (< 1.5 m), proline (< 2.5 m) and sucrose (< 1.2 m) reduced the inactivation and unfolding rate constants of creatine kinase, increased the change in transition free energy of inactivation and unfolding (Delta Delta G(u)) and stabilized its active conformation relative to the partially unfolded state with no osmolytes. In the presence of various osmolytes, the inactivation and unfolding dynamics of creatine kinase were related to the protein concentrations. These osmolytes protected creatine kinase against guanidine denaturation in a concentration-dependent manner. The ability of the osmolytes to protect creatine kinase against guanidine denaturation decreased in order from sucrose to glycine to proline. Dimethysulfoxide was considered separately. This study also suggests that osmolytes are not only energy substrates for metabolism and organic components in vivo, but also have an important physiological function for maintaining adequate rates of enzymatic catalysis and for stabilizing the protein secondary and tertiary conformations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号