首页 | 本学科首页   官方微博 | 高级检索  
   检索      


T-lymphocytes mediate left ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice
Authors:Qianli Yu  Randy Vazquez  Sherma Zabadi  Ronald R Watson  Douglas F Larson
Institution:1. Sarver Heart Center, College of Medicine, The University of Arizona, Tucson, AZ 85724, United States;2. Division of Health Promotion Sciences, Mel and Enid Zuckerman Arizona College of Public Health, The University of Arizona, Tucson, AZ 85724, United States;3. Department of Nutritional Sciences; The University of Arizona, Tucson, AZ 85724, United States
Abstract:Aberrant concentrations of cardiac extracellular matrix (ECM) fibrillar collagen cross-linking have been proposed to be an underlying cause of cardiac diastolic dysfunction however the role of the adaptive immune system in this process has yet to be investigated. Fibrillar collagen cross-linking is a product of the enzymatic activities of lysyl oxidase (LOX and LOXL-3) released by the cardiac fibroblast and possibly cardiac myocytes. Our hypothesis is that stimulation of the TH1 lymphocytes activates lysyl oxidase mediated ECM cross-linking and thereby alters left ventricular function. Three-month old C57BL/J female mice were treated with selective TH1 lymphocyte inducers — T-cell receptor Vβ peptides (TCR). After 6 weeks, candidate gene expression, tissue enzymatic activity, ECM composition, and left ventricular mechanics were quantified. Lymphocyte gene expression and cytokine assay revealed TH1 immune polarization with TCR administration which was associated with a 2.6-fold and 3.1-fold increase of LOX and LOXL3 gene expression, respectively, and a 55% increase in cardiac LOX enzymatic activity. The ECM cross-linked fibrillar collagen increased by 95% when compared with the control. Concurrently, there was a 33% increased ventricular stiffness, decreased cardiac output, and normal ejection fraction. These data implicate the TH1 lymphocyte in the pathogenesis of diastolic dysfunction which has potential clinical application in the pathogenesis of diastolic heart failure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号