首页 | 本学科首页   官方微博 | 高级检索  
     


Angiotensin II induces complex fractionated electrogram in a cultured atrial myocyte monolayer mediated by calcium and sodium-calcium exchanger
Authors:Tsai Chia-Ti  Chiang Fu-Tien  Chen Wen-Pin  Hwang Juey-Jen  Tseng Chuen-Den  Wu Cho-Kai  Yu Chih-Chieh  Wang Yi-Chih  Lai Ling-Ping  Lin Jiunn-Lee
Affiliation:Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
Abstract:Angiotensin II (AngII) has been implicated in the mechanism of atrial fibrillation (AF). There may be calcium-dependent pro-fibrillatory effect of AngII on atrial myocytes. We used cultured confluent HL-1 atrial myocyte monolayer with spontaneously propagated depolarization to study direct pro-fibrillatory effect of AngII and its molecular mechanism. AngII stimulation induced fibrillatory-like complex electrogram and calcium wave propagation. AngII shortened action potential duration and augmented calcium transient, thus increasing electrochemical gradient of forward-mode sodium-calcium exchanger (NCX) current and induced frequent irregular afterdepolarizations. AngII increased expression of sodium-calcium exchanger (NCX), further increasing calcium-membrane voltage coupling gain. The fibrillatory effect of AngII was attenuated by NCX blocker SEA0400 and NCX siRNA knockdown. AngII increased expression of L-type calcium channel and augmented calcium transient through PKC and CREB. The fibrillatory effect of AngII was also attenuated by PKC inhibitor chelerythrine and dominant negative form of CREB. In conclusions, AngII itself may electrically contribute to the mechanism of AF through increasing NCX expression and augmenting calcium transient, which is PKC and CREB dependent. Specific genetic knockdown of NCX attenuated calcium mediated afterdepolarization and complex electrogram.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号