Two distinct, calcium-mediated, signal transduction pathways can trigger deflagellation in Chlamydomonas reinhardtii |
| |
Abstract: | The molecular machinery of deflagellation can be activated in detergent permeabilized Chlamydomonas reinhardtii by the addition of Ca2+ (Sanders, M. A., and J. L. Salisbury, 1989. J. Cell Biol. 108:1751- 1760). This suggests that stimuli which induce deflagellation in living cells cause an increase in the intracellular concentration of Ca2+, but this has never been demonstrated. In this paper we report that the wasp venom peptide, mastoparan, and the permeant organic acid, benzoate, activate two different signalling pathways to trigger deflagellation. We have characterized each pathway with respect to: (a) the requirement for extracellular Ca2+; (b) sensitivity to Ca2+ channel blockers; and (c) 45Ca influx. We also report that a new mutant strain of C. reinhardtii, adf-1, is specifically defective in the acid-activated signalling pathway. Both signalling pathways appear normal in another mutant, fa-1, that is defective in the machinery of deflagellation (Lewin, R. and C. Burrascano. 1983. Experientia. 39:1397-1398; Sanders, M. A., and J. L. Salisbury. 1989. J. Cell Biol. 108:1751-1760). We conclude that mastoparan induces the release of an intracellular pool of Ca2+ whereas acid induces an influx of extracellular Ca2+ to activate the machinery of deflagellation. |
| |
Keywords: | |
|
|