首页 | 本学科首页   官方微博 | 高级检索  
     


Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum
Authors:Nicole Schmohl  Jens Pilling  Joachim Fisahn   Walter J. Horst
Affiliation:Institute of Plant Nutrition, University of Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany;Max Planck Institute for Molecular Plant Physiology, Karl-Liebknecht-Str. 25, Haus 20, D-14476 Golm, Germany
Abstract:Cell suspension cultures of Zeamays L. were adapted to grow under conditions of NaCl stress, which increased the cell‐wall pectin content of these cells by 31% compared with unadapted cells (controls). Both cultures were treated for 5 or 10 min with pectin methylesterase (PME) and afterwards incubated in the presence of Al for 2 h. The different capabilities of the cells to synthesise callose due to pre‐treatment were taken into account by calculating relative Al‐induced callose induction (digitonin=100%). Only in salt‐adapted cells with a degree of methylation of cell‐wall pectin (DM) decreasing from 34% (control) to 13%, did PME treatment enhance total and BaCl2‐non‐exchangeable Al contents and Al sensitivity as indicated by increased callose formation. In a further step, a wider variation in DM was achieved by subculturing the NaCl‐adapted cells for up to 3 weeks without NaCl supply and adapting them to the cellulose‐synthesis inhibitor 2,6‐dichlorbenzonitrile (DCB). This reduced DM to 26%, while short‐term treatment with pectolyase resulted in the lowest DM (12%). After the 2 h Al treatment, there was a close negative relationship between DM and relative callose formation of Al contents, with the exception of pectolyase‐treated cells. In addition, intact plants of Solanumtuberosum L. genotypes were characterised for their Al sensitivity in hydroponics using root elongation, Al‐induced callose formation and Al contents of root tips as parameters. Based on all three parameters, the transgenic potato mutant overexpressing PME proved to be more Al‐sensitive than the wild type, the Al‐resistant and even the Al‐sensitive potato cultivar. Especially in the root tips (1 cm), Al treatment (2 h, 50 μM) increased the activity of PME more in the Al‐sensitive than in the Al‐resistant genotypes. The presented data emphasise the importance of the DM of the pectin matrix and the activity of PME for the expression of Al toxicity and Al resistance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号