首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pyridoxal 5'-diphospho-5'-adenosine binds at a single site on isolated alpha-subunit from Escherichia coli F1-ATPase and specifically reacts with lysine 201
Authors:R Rao  D Cunningham  R L Cross  A E Senior
Institution:Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210.
Abstract:Pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP), an adenine nucleotide affinity analog, was found to bind in a saturable fashion to isolated alpha-subunit from Escherichia coli F1-ATPase with a stoichiometry of one mol/mol and a Kd approximately 150 microM. The binding was shown to be specific by the following criteria: 1) ATP reduced the binding of PLP-AMP by 80%, and 2) PLP-AMP, like ATP, induced a conformational change which increased the mobility of alpha-subunit in nondenaturing polyacrylamide gel electrophoresis and rendered alpha-subunit resistant to mild trypsin proteolysis. A stable adduct was formed between isolated alpha-subunit and 3H] PLP-AMP after reduction with NaBH4. alpha-Subunit labeled to the extent of 0.4-0.7 mol/mol was digested with trypsin and subjected to high pressure liquid chromatography purification, yielding a single labeled peptide. Automated amino acid sequencing showed that residue alpha-Lys-201 was specifically labeled. The results suggest that Lys-201 occupies a position proximate to the phosphate groups of bound ATP in the alpha.ATP complex. PLP-AMP did not support repolymerization of isolated alpha-, beta-, and gamma-subunits, consistent with previous reports that subunit repolymerization in vitro is dependent upon the presence of nucleoside triphosphate. Further, PLP-AMP-labeled alpha-subunit could not be reconstituted with isolated beta- and gamma-subunits in the presence of ATP, showing that occupation of the alpha-subunit nucleotide site by PLP-AMP impairs normal subunit-subunit interaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号