首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of the [2Fe-2S]2+ cluster in biotin synthase: mutagenesis of the atypical metal ligand arginine 260
Authors:Broach Robyn B  Jarrett Joseph T
Institution:Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Abstract:Biotin synthase (BS) is an S-adenosylmethionine (AdoMet)-dependent radical enzyme that catalyzes the addition of sulfur to dethiobiotin. Like other AdoMet radical enzymes, BS contains a 4Fe-4S] cluster that is coordinated by a highly conserved CxxxCxxC sequence motif and by the methionyl amine and carboxylate of AdoMet. The close association of the 4Fe-4S]+ cluster with AdoMet facilitates reductive cleavage of the sulfonium and the generation of transient 5'-deoxyadenosyl radicals, which are then proposed to sequentially abstract hydrogen atoms from the substrate to produce carbon radicals at C9 and C6 of dethiobiotin. BS also contains a 2Fe-2S]2+ cluster located approximately 4-5 A from dethiobiotin, and we have proposed that a bridging sulfide of this cluster quenches the substrate radicals, leading to formation of the thiophane ring of biotin. In BS from Escherichia coli, the 2Fe-2S]2+ cluster is coordinated by cysteines 97, 128, and 188, and the atypical metal ligand, arginine 260. The evolutionary conservation of an arginine guanidinium as a metal ligand suggests a novel role for this residue in tuning the reactivity or stability of the 2Fe-2S]2+ cluster. In this work, we explore the effects of mutagenesis of Arg260 to Ala, Cys, His, and Met. Although perturbations in a number of characteristics of the 2Fe-2S]2+ cluster and the proteins are noted, the reconstituted enzymes have in vitro single-turnover activities that are 30-120% of that of the wild type. Further, in vivo expression of each mutant enzyme was sufficient to sustain growth of a bioB- mutant strain on dethiobiotin-supplemented medium, suggesting the enzymes were active and efficiently reconstituted by the in vivo iron-sulfur cluster (ISC) assembly system. Although we cannot exclude an as-yet-unidentified in vivo role in cluster repair or retention, we can conclude that Arg260 is not essential for the catalytic reaction of BS.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号