首页 | 本学科首页   官方微博 | 高级检索  
     


Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics
Authors:Weijers Mireille  Barneveld Peter A  Cohen Stuart Martien A  Visschers Ronald W
Affiliation:Wageningen Centre for Food Sciences, Diedenweg 20, 6700 AN Wageningen, The Netherlands. mireille.weijers@nizo.nl
Abstract:The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly pure ovalbumin, the decrease in nondenatured native protein showed first-order dependence. The activation energy obtained with different techniques varied between 430 and 490 kJ*mole(-1). First-order behavior was studied in detail using differential scanning calorimetry. The calorimetric traces were irreversible and highly scan rate-dependent. The shape of the thermograms as well as the scan rate dependence can be explained by assuming that the thermal denaturation takes place according to a simplified kinetic process where N is the native state, D is denatured (or another final state) and k a first-order kinetic constant that changes with temperature, according to the Arrhenius equation. A kinetic model for the temperature-induced denaturation and aggregation of ovalbumin is presented. Commercially obtained ovalbumin was found to contain an intermediate-stable fraction (IS) of about 20% that was unable to form aggregates. The denaturation of this fraction did not satisfy first-order kinetics.
Keywords:Irreversible transitions   scan-rate dependence   scanning calorimetry   chromatography   protein denaturation   aggregation   globular proteins   ovalbumin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号