首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distribution of cutin and suberin biomarkers under forest trees with different root systems
Authors:Sandra Spielvogel  Jörg Prietzel  Jana Leide  Michael Riedel  Julian Zemke  Ingrid Kögel-Knabner
Institution:1. Department of Geological Sciences and Engineering, University of Nevada, Reno, Reno, NV, 89557, USA
2. Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, 89119, USA
3. Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
4. School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
Abstract:

Background and aims

The rhizosphere, the soil immediately surrounding roots, provides a critical bridge for water and nutrient uptake. The rhizosphere is influenced by various forms of root–soil interactions of which mechanical deformation due to root growth and its effects on the hydraulics of the rhizosphere are the least studied. In this work, we focus on developing new experimental and numerical tools to assess these changes.

Methods

This study combines X-ray micro-tomography (XMT) with coupled numerical simulation of fluid and soil deformation in the rhizosphere. The study provides a new set of tools to mechanistically investigate root-induced rhizosphere compaction and its effect on root water uptake. The numerical simulator was tested on highly deformable soil to document its ability to handle a large degree of strain.

Results

Our experimental results indicate that measured rhizosphere compaction by roots via localized soil compaction increased the simulated water flow to the roots by 27 % as compared to an uncompacted fine-textured soil of low bulk density characteristic of seed beds or forest topsoils. This increased water flow primarily occurred due to local deformation of the soil aggregates as seen in the XMT images, which increased hydraulic conductivity of the soil. Further simulated root growth and deformation beyond that observed in the XMT images led to water uptake enhancement of ~50 % beyond that due to root diameter increase alone and demonstrated the positive benefits of root compaction in low density soils.

Conclusions

The development of numerical models to quantify the coupling of root driven compaction and fluid flow provides new tools to improve the understanding of plant water uptake, nutrient availability and agricultural efficiency. This study demonstrated that plants, particularly during early growth in highly deformable low density soils, are involved in active mechanical management of their surroundings. These modeling approaches may now be used to quantify compaction and root growth impacts in a wide range of soils.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号