首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis
Authors:Yan Jiang  Kai Wu  Feng Lin  Yana Qu  Xiaoxiang Liu  Qun Zhang
Affiliation:1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
Abstract:Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca2+ ([Ca2+]cyt) elevation was partially blocked, and exogenous Ca2+-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca2+ increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca2+, and microtubules are essential for ABA signaling.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号