首页 | 本学科首页   官方微博 | 高级检索  
     


Transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum) allomone response to cotton aphid, Aphis gossypii, in a closed-dynamics CO(2) chamber (CDCC)
Authors:Wu Gang  Chen Fa Jun  Ge Feng  Sun Yu-Cheng
Affiliation:(1) National Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, P.O. Box 27, Bei Si Huan Xi Lu 25 hao, Beijing, 100080, People’s Republic of China;(2) Department of Entomology, College of Plant Protection, Nanjing Agricultural University (NAU), Nanjing, Jiangsu Province, 210095, People’s Republic of China;(3) Department of Biology, College of Science, Wuhan University of Technology, Hubei, 430070, People’s Republic of China
Abstract:Allocation of allomones of transgenic Bacillus thuringiensis Gossypium hirsutum (Bt cotton) (cv. GK-12) and non-Bt-transgenic cotton (cv. Simian-3) grown in elevated CO2 in response to infestation by cotton aphid, Aphis gossypii Glover, was studied in a closed-dynamics CO2 chamber. Significant increases in foliar condensed tannin and carbon/nitrogen ratio for GK-12 and Simian-3 were observed in elevated CO2 relative to ambient CO2, as partially supported by the carbon nutrient balance hypothesis, owing to limiting nitrogen and excess carbon in cotton plants in response to elevated CO2. The CO2 level significantly influenced the foliar nutrients and allomones in the cotton plants. Aphid infestation significantly affected foliar nitrogen and allomone compounds in the cotton plants. Allomone allocation patterns in transgenic Bt cotton infested by A. gossypii may have broader implications across a range of plant and herbivorous insects as CO2 continues to rise. Gang Wu and Fa Jun Chen contributed equally to this work.
Keywords:Elevated CO2    Aphis gossypii   Transgenic Bt cotton  Allomone compounds  Plant allocation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号