首页 | 本学科首页   官方微博 | 高级检索  
     


Comprehensive analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition
Authors:Yatsuda Ana P  Krijgsveld Jeroen  Cornelissen Albert W C A  Heck Albert J R  de Vries Erik
Affiliation:Department of Infectious Diseases and Immunology, Utrecht University, PO Box 80165, 3508 TD, Utrecht, The Netherlands.
Abstract:Haemonchus contortus is a nematode that infects small ruminants. It releases a variety of molecules, designated excretory/secretory products (ESP), into the host. Although the composition of ESP is largely unknown, it is a source of potential vaccine components because ESP are able to induce up to 90% protection in sheep. We used proteomic tools to analyze ESP proteins and determined the recognition of these individual proteins by hyperimmune sera. Following two-dimensional electrophoresis of ESP, matrix-assisted laser desorption ionization time-of-flight and liquid chromatography-tandem mass spectrometry were used for protein identification. Few sequences of H. contortus have been determined. Therefore, the data base of expressed sequence tags (dbEST) and a data base consisting of contigs from Haemonchus ESTs were also consulted for identification. Approximately 200 individual spots were observed in the two-dimensional gel. Comprehensive proteomics analysis, combined with bioinformatic search tools, identified 107 proteins in 102 spots. The data include known as well as novel proteins such as serine, metallo- and aspartyl proteases, in addition to H. contortus ESP components like Hc24, Hc40, Hc15, and apical gut GA1 proteins. Novel proteins were identified from matches with H. contortus ESTs displaying high similarity with proteins like cyclophilins, nucleoside diphosphate kinase, OV39 antigen, and undescribed homologues of Caenorhabditis elegans. Of special note is the finding of microsomal peptidase H11, a vaccine candidate previously regarded as a "hidden antigen" because it was not found in ESP. Extensive sequence variation is present in the abundant Hc15 proteins. The Hc15 isoforms are differentially recognized by hyperimmune sera, pointing to a possible specific role of Hc15 in the infectious process and/or in immune evasion. This concept and the identification of multiple novel immune-recognized components in ESP should assist future vaccine development strategies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号