首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of rat erythrocyte antioxidant defense system by buthionine sulfoximine and its reversal by glutathione monoester therapy
Authors:Rajasekaran Namakkal Surappan  Devaraj Niranjali S  Devaraj Halagowder
Institution:Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai, 600 025, India. nsrajachem@rediffmail.com
Abstract:The protective effects of glutathione monoester (GME) on buthionine sulfoximine (BSO)-induced glutathione (GSH) depletion and its sequel were evaluated in rat erythrocyte/erythrocyte membrane. Animals were divided into three groups (n=6 in each): control, BSO and BSO+GME group. Administration of BSO, at a concentration of 4 mmol/kg bw, to the albino rats resulted in depletion of blood GSH level to about 59%. GSH was elevated several folds in the GME group as compared to the control (P<0.05) and BSO (P<0.001) groups. Decreased concentration of vitamin E was found in the erythrocyte membrane isolated from BSO-administered animals. Antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were also found to be altered due to BSO-induced GSH depletion in blood erythrocytes. The SOD and CAT activities in BSO group were significantly lower (P<0.001) than the other groups. Lipid peroxidation index and malondialdehyde (MDA) levels in erythrocytes and their membranes were increased to about 45% and 40%, respectively. The activities of Ca2+ ATPase, Mg2+ ATPase and Na+K+ ATPase were lower than those of control group (P<0.05), whereas the activities of these enzymes were found to be restored to normal followed by GME therapy (P<0.05). Cholesterol, phospholipid and C/P ratio and some of the phospholipid classes like phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphingomyelin were significantly (P<0.05) altered in the erythrocyte membranes of BSO-administered rats compared with those of control group. These parameters were restored to control group levels in GME-treated group. Oxidative stress may play a major role in the BSO-mediated gamma glutamyl cysteine synthetase (gamma-GCS) inhibition and hence the depletion of GSH. In conclusion, our findings have shown that antioxidant status decreased and lipid peroxidation increased in BSO-treated rats. GME potentiates the RBC and blood antioxidant defense mechanisms and decreases lipid peroxidation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号