首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spectroscopic analysis on structure–affinity relationship in the interactions of different oleanane‐type triterpenoids with bovine serum albumin
Authors:Jia Hou  Zhenzhong Wang  Ying Yue  Qian Li  Shijun Shao
Institution:1. Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, People's Republic of China;2. University of Chinese Academy of Sciences, Beijing, People's Republic of China
Abstract:Oleanane‐type triterpenoids serve as an important group of plant secondary metabolites with a variety of biological activities and the C‐3 position substitution pattern is a significant structural feature for their biological activities. Three selected oleanane‐type triterpenoids (glycyrrhizin, glycyrrhetinic acid, and carbenoxolone) bearing different substituents (glucuronic acid dimer, hydroxyl, and succinyl groups) at the C‐3 position were studied for their affinities to bind bovine serum albumin (BSA) by steady‐state fluorescence, synchronous, three‐dimensional fluorescence and ultraviolet–visible (UV–vis) absorption spectra. The binding mechanism of the triterpenoids to BSA is due to the formation of the triterpenoids–BSA complex and the binding affinity is strongest for carbenoxolone and ranked in the order carbenoxolone > glycyrrhetinic acid > glycyrrhizin. The thermodynamic parameters calculated at different temperatures showed that triterpenoids binding to BSA primarily depended on hydrophobic interaction and hydrogen bonding. The distance between the bound triterpenoid and BSA was determined on the basis of the Förster's energy transfer theory. Displacement experiments using phenylbutazone and ibuprofen showed the binding site of triterpenoids on BSA at subdomain IIA (Sudlow's site I). The effect of triterpenoids on BSA conformation was analyzed by UV–vis absorption, and synchronous and three‐dimensional fluorescence spectra. These results revealed that the C‐3 position substitution pattern significantly affects the structure–affinity relationships of oleanane‐type triterpenoid binding to BSA and further affects the bioavailability of triterpenoids in the blood circulatory system. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:oleanane‐type triterpenoids  binding affinity  fluorescence  bovine serum albumin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号