首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors
Authors:Fehr Marcus  Takanaga Hitomi  Ehrhardt David W  Frommer Wolf B
Affiliation:Carnegie Institution, Stanford, CA 94305, USA.
Abstract:Glucose release from hepatocytes is important for maintenance of blood glucose levels. Glucose-6-phosphate phosphatase, catalyzing the final metabolic step of gluconeogenesis, faces the endoplasmic reticulum (ER) lumen. Thus, glucose produced in the ER has to be either exported from the ER into the cytosol before release into circulation or exported directly by a vesicular pathway. To measure ER transport of glucose, fluorescence resonance energy transfer-based nanosensors were targeted to the cytosol or the ER lumen of HepG2 cells. During perfusion with 5 mM glucose, cytosolic levels were maintained at approximately 80% of the external supply, indicating that plasma membrane transport exceeded the rate of glucose phosphorylation. Glucose levels and kinetics inside the ER were indistinguishable from cytosolic levels, suggesting rapid bidirectional glucose transport across the ER membrane. A dynamic model incorporating rapid bidirectional ER transport yields a very good fit with the observed kinetics. Plasma membrane and ER membrane glucose transport differed regarding sensitivity to cytochalasin B and showed different relative kinetics for galactose uptake and release, suggesting catalysis by distinct activities at the two membranes. The presence of a high-capacity glucose transport system on the ER membrane is consistent with the hypothesis that glucose export from hepatocytes occurs via the cytosol by a yet-to-be-identified set of proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号