首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Drought- and frost-induced accumulation of soluble carbohydrates during accelerated senescence in <Emphasis Type="Italic">Quercus pubescens</Emphasis>
Authors:Vera Holland  Stefan Koller  Stefan Lukas  Wolfgang Brüggemann
Institution:1.Biodiversity and Climate Research Centre (BiK-F) Frankfurt,Frankfurt,Germany;2.Department of Ecology, Evolution and Diversity,Goethe University,Frankfurt,Germany
Abstract:

Key message

Different environmental conditions affect tree senescence by different patterns of carbohydrate concentrations and have specific impact on the dissection of the photosynthetic apparatus.

Abstract

A proactive cultivation of Mediterranean broadleaf species, including oaks, has been suggested to fill possible temporal and spatial gaps in forestry created by Climate Change in Central Europe in the future. Climate can affect trees in several different ways, e.g., by modulating the course of leaf senescence. Senescence-associated processes, like regulation of carbohydrates and changes in chlorophyll fluorescence under drought stress conditions were studied with leaf tissue of drought-tolerant downy oak (Quercus pubescens). Two months of consistent drought stress in a frost-free greenhouse led to significantly earlier senescence and significant increased amounts of soluble sugars in the leaves of the drought-stressed group in comparison to a well-watered control group. Similar sugar accumulation was observed in trees outdoors, after exposure to frost. In contrast to monocarpic plants the accumulation of free sugars is neither triggering leaf senescence, nor is it a side effect of age-depending changes in Q. pubescens. Instead, sugar accumulation is induced by abiotical factors, like drought and frost. Furthermore, we suggest that the senescence process in the absence of drought stress or frost depends on the source status of the leaf, which, in term, is a function of light (through photosynthesis) and night temperature (through respiration). Contents of the storage metabolite starch decreased during late summer in all three groups. Drought-stressed plants showed a decline of the connectivity of photosystem II antenna, reflected as the L-band in the chlorophyll fluorescence induction curves, and stronger correlations between the declines in the capacity of photosynthetic dark reactions and electron transport-associated chlorophyll fluorescence parameters. We conclude that the disassembly of single parts of the photosynthetic apparatus during leaf senescence is a uniform process, but the onset of this process depends on abiotical environmental factors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号