首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ectomycorrhizal fungal exoenzyme activity differs on spruce seedlings planted in forests versus clearcuts
Authors:Jennifer K M Walker  Valerie Ward  Melanie D Jones
Institution:1.Biology Department,University of British Columbia, Okanagan Campus, Science Building,Kelowna,Canada;2.Hawkesbury Institute for the Environment,University of Western Sydney,Penrith,Australia
Abstract:

Key message

Ectomycorrhizal (ECM) fungal community structure and potential exoenzymatic activity change after clearcut harvesting, but functional complementarity and redundancy among those ECM fungal species remaining support growth of regenerating seedlings.

Abstract

Ectomycorrhizal (ECM) fungal community composition is altered by forest harvesting, but it is not clear if this shift in structure influences ECM fungal physiological function at the community level. In this study, we characterized activities of extracellular enzymes in the ectomycorrhizospheres of Picea engelmannii seedlings grown in forest and clearcut plots. These exoenzymes are critical for the breakdown of large organic molecules, from which nutrients are subsequently absorbed and translocated by ECM fungi to host plants. We found that ectomycorrhizae on seedlings planted in forests had different exoenzyme activity profiles than those on seedlings planted in clearcuts. Specifically, the activities of glucuronidase, laccase, and acid phosphatase were higher on forest seedlings (P ≤ 0.006). These differences may have been partly driven by soil properties. Total carbon, total nitrogen (N), extractable phosphorus, extractable ammonium-N, and mineralizable N were higher, while pH was lower in forest plots (P ≤ 0.01). However, we also found that enzyme activity only shifted where community composition also changed. Functional complementarity can be inferred within ECM fungal communities in both forests and clearcuts because ectomycorrhizae formed by different species in the same environment had distinct enzyme profiles (P < 0.0001). However, ectomycorrhizae of Thelephora terrestris exhibited high levels of N- and P-mobilizing exoenzyme activities. Seedling biomass did not differ between forest and clearcut environments, so the high abundance of T. terrestris ectomycorrhizae in the clearcuts may have sustained nutrient acquisition by clearcut seedlings even in soils with lower N and P and with reduced ECM fungal species richness.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号