首页 | 本学科首页   官方微博 | 高级检索  
     


Nanotechnology: an efficient approach for rejuvenation of aged seeds
Authors:Rasleen Kaur  Jipsi Chandra  S. Keshavkant
Affiliation:School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492010 India
Abstract:Modern agricultural efforts are now in search of an efficient, eco-friendly and sustainable approach for enhanced crop production. Nearly 50–60% of seeds lost occurs due to improper technical handling. Seed deterioration manifests itself as reduction in the rate of germination and growth with increased susceptibility to biotic and abiotic stresses. Furthermore, seed ageing is another economic and scientific issue that is associated with an array of internal (structural, physiological and genetic) and external (storage temperature and relative humidity) factors. Reactive oxygen species (ROS) are believed to be a key player in ageing phenomenon. However, hydrated storage, or ROS blockers are a few of the conventionally used methods to minimize the ageing process. Recently, exogenous applications of different inorganic nanoparticles (metal and metal oxide) are suggested to revitalize and revive aged seeds. Owing to their special properties of nano-size with high surface area they easily penetrate the seed coat. Exposure of nanoparticles has been suggested to neutralize the excess of ROS to a level that initiates hormonal signaling to support early emergence of radicles from the seeds. Nanotechnology has been well explored to enhance the crops nutritional quality, livestock productivity, plant protection from various stressors and in enhancement of seed quality via nanopesticides and nanofertilizers. Aiming at sustainable agriculture practices with fewer inputs, maximum benefits, ecologically safe and compatible technique the nanotechnology is an efficient approach to counteract problems of seed ageing incurring during storage, which is relatively less explored and unresolved conventionally, in general.Keyword: Ageing, Deteriorative reactions, Nanoparticles, Oxidative stress, ROS
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号