首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts
Authors:Durand Stéphanie H  Flacher Vincent  Roméas Annick  Carrouel Florence  Colomb Evelyne  Vincent Claude  Magloire Henry  Couble Marie-Lise  Bleicher Françoise  Staquet Marie-Jeanne  Lebecque Serge  Farges Jean-Christophe
Institution:Laboratory Development and Regeneration of Dental Tissues, University Lyon 1, Faculty of Odontology, Institut National de la Santé et de la Recherche Médicale (INSERM) ERi76 Equipe d'Accueil 1892, Institut Fédératif de Recherche 62, Lyon, France.
Abstract:Gram-positive bacteria entering the dentinal tissue during the carious process are suspected to influence the immune response in human dental pulp. Odontoblasts situated at the pulp/dentin interface are the first cells encountered by these bacteria and therefore could play a crucial role in this response. In the present study, we found that in vitro-differentiated odontoblasts constitutively expressed the pattern recognition receptor TLR1-6 and 9 genes but not TLR7, 8, and 10. Furthermore, lipoteichoic acid (LTA), a wall component of Gram-positive bacteria, triggered the activation of the odontoblasts. LTA up-regulated the expression of its own receptor TLR2, as well as the production of several chemokines. In particular, an increased amount of CCL2 and CXCL10 was detected in supernatants from LTA-stimulated odontoblasts, and those supernatants augmented the migration of immature dendritic cells in vitro compared with controls. Clinical relevance of these observations came from immunohistochemical analysis showing that CCL2 was expressed in vivo by odontoblasts and blood vessels present under active carious lesions but not in healthy dental pulps. In contrast with this inflammatory response, gene expression of major dentin matrix components (type I collagen, dentin sialophosphoprotein) and TGF-beta1 was sharply down-regulated in odontoblasts by LTA. Taken together, these data suggest that odontoblasts activated through TLR2 by Gram-positive bacteria LTA are able to initiate an innate immune response by secreting chemokines that recruit immature dendritic cells while down-regulating their specialized functions of dentin matrix synthesis and mineralization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号