首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Role of Properdin in Zymosan- and Escherichia coli-Induced Complement Activation
Authors:Morten Harboe  Peter Garred  Julie K Lindstad  Anne Pharo  Fredrik Müller  Gregory L Stahl  John D Lambris  Tom E Mollnes
Institution:Institute of Immunology, University of Oslo and Oslo University Hospital, Rikshospitalet, NO-0027 Oslo, Norway;
Abstract:Properdin is well known as an enhancer of the alternative complement amplification loop when C3 is activated, whereas its role as a recognition molecule of exogenous pathogen-associated molecular patterns and initiator of complement activation is less understood. We therefore studied the role of properdin in activation of complement in normal human serum by zymosan and various Escherichia coli strains. In ELISA, microtiter plates coated with zymosan induced efficient complement activation with deposition of C4b and terminal complement complex on the solid phase. Virtually no deposition of C4b or terminal complement complex was observed with mannose-binding lectin (MBL)-deficient serum. Reconstitution with purified MBL showed distinct activation in both readouts. In ELISA, normal human serum-induced deposition of properdin by zymosan was abolished by the C3-inhibiting peptide compstatin. Flow cytometry was used to further explore whether properdin acts as an initial recognition molecule reacting directly with zymosan and three E. coli strains. Experiments reported by other authors were made with EGTA Mg(2+) buffer, permitting autoactivation of C3. We found inhibition by compstatin on these substrates, indicating that properdin deposition depended on initial C3b deposition followed by properdin in a second step. Properdin released from human polymorphonuclear cells stimulated with PMA did not bind to zymosan or E. coli, but when incubated in properdin-depleted serum this form of properdin bound efficiently to both substrates in a strictly C3-dependent manner, as the binding was abolished by compstatin. Collectively, these data indicate that properdin in serum as well as polymorphonuclear-released properdin is unable to bind and initiate direct alternative pathway activation on these substrates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号