首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lanthanide binding and IgG affinity construct: Potential applications in solution NMR, MRI, and luminescence microscopy
Authors:Adam W Barb  Tienhuei Grace Ho  Heather Flanagan-Steet  James H Prestegard
Institution:Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia.
Abstract:Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb(3+) with 130 nM affinity. Ions such as Dy(3+) , Yb(3+) , and Ce(3+) produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd(3+) complex) and luminescence microscopy (Z-L2LBT: Tb(3+) complex).
Keywords:lanthanide binding  imaging reagents  protein NMR  immunoglobulin label  protein design
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号