首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chemical modification study of antisense gapmers
Authors:Stanton Robert  Sciabola Simone  Salatto Christopher  Weng Yan  Moshinsky Debra  Little Jeremy  Walters Evan  Kreeger John  Dimattia Debra  Chen Tracy  Clark Tracey  Liu Mei  Qian Jessie  Roy Marc  Dullea Robert
Institution:1 Oligonucleotide Therapeutic Unit, Pfizer , Cambridge, Massachusetts.
Abstract:A series of insertion patterns for chemically modified nucleotides 2'-O-methyl (2'-OMe), 2'-fluoro (2'-F), methoxyethyl (MOE), locked nucleic acid (LNA), and G-Clamp] within antisense gapmers is studied in vitro and in vivo in the context of the glucocorticoid receptor. Correlation between lipid transfection and unassisted (gymnotic-using no transfection agent) in vitro assays is seen to be dependent on the chemical modification, with the in vivo results corresponding to the unassisted assay in vitro. While in vitro mRNA knockdown assays are typically reasonable predictors of in vivo results, G-Clamp modified antisense oligonucleotides have poor in vivo mRNA knockdown as compared to transfected cell based assays. For LNA gapmers, knockdown is seen to be highly sensitive to the length of the antisense and number of LNA insertions, with longer 5LNA-10DNA-5LNA compounds giving less activity than 3LNA-10DNA-3LNA derivatives. Additionally, the degree of hepatoxicity for antisense gapmers with identical sequences was seen to vary widely with only subtle changes in the chemical modification pattern. While the optimization of knockdown and hepatic effects remains a sequence specific exercise, general trends emerge around preferred physical properties and modification patterns.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号