首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Symbiont Succession during Embryonic Development of the European Medicinal Leech,Hirudo verbana
Authors:Rita V M Rio  Michele Maltz  Benjamin McCormick  Alexander Reiss  Joerg Graf
Institution:Department of Biology, West Virginia University, Morgantown, West Virginia 26506,1. Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 062692.
Abstract:The European medicinal leech, Hirudo verbana, harbors simple microbial communities in the digestive tract and bladder. The colonization history, infection frequency, and growth dynamics of symbionts through host embryogenesis are described using diagnostic PCR and quantitative PCR. Symbiont species displayed diversity in temporal establishment and proliferation through leech development.The hermaphroditic European medicinal leech (Hirudo spp.) is one of the most extensively examined animal models in neurophysiological, developmental, and behavioral studies (14) and has recently been used as a naturally occurring simple model for beneficial symbioses (5, 13). A fundamental question of microbial symbioses is how to determine the transmission mode of the symbionts between generations. Hirudo verbana reproduces by depositing eggs, which are surrounded by a cocoon. The cocoon is secreted from glandular cells of the parental mouth and usually contains 5 to 25 eggs. Each individual egg is encased by a self-enclosed vitelline membrane, referred to as the larval sac, and is bathed in a nutritious albumenous fluid (14). Complete embryonic development occurs within the cocoon and is composed of two distinct life stages, cryptolarva and juvenile. The cryptolarva transitions into a juvenile approximately midway into embryogenesis. The temporal acquisition of morphological attributes during embryonic development have been well described (3, 12, 16) (Fig. (Fig.11).Open in a separate windowFIG. 1.Paradigm of percent embryonic development (% ED) of the European medicinal leech, H. verbana, relative to the acquisition of digestive tract features. At 20 ± 1°C, 24 h is equivalent to 3.33% ED, with complete embryogenesis (spanning from cocoon deposition to the emergence of adult-like juveniles) requiring approximately 30 h. Staging scheme based on references 3 and 12. *, sampling time point; PD, days postcocoon deposition; prs, pairs; d, days. (Adapted from reference 12 with permission of John Wiley & Sons. Copyright 1998 Wiley-Liss, Inc.)The medicinal leech houses distinct microbial communities within its digestive tract and secretory bladders. Culturing and culture-independent profiling of the European medicinal leech, H. verbana, through fluorescence in situ hybridization, study of 16S rRNA gene clone libraries, and terminal restric-tion length polymorphism, revealed a simple and stable microbial community within the adult midgut (2, 4, 7, 8, 18). The gammaproteobacterium Aeromonas veronii and a member of the Bacteroidetes, Rikenella, were identified as consistent and dominant extracellular residents of the medicinal leech crop and intestinum. An early culture-based study detected a bacterium that is now considered to be A. veronii in the cocoon albumen and in young leeches after hatching (1). In previous electron microscopy work investigating the embryonic development of the bladders, intracellular bacteria were detected within the bladder wall and extracellular bacteria within the lumen (2, 16, 17). A recent study revealed that this microbiota is organized in distinct layers and is composed of the deltaproteobacterium Bdellovibrio, betaproteobacteria Comamonas and Sterolibacterium, members of the Bacteroidetes, Sphingobacterium and Niabella, and alphaproteobacterium Ochrobactrum spp. (10). Although the microbial constituents of the adult H. verbana digestive tract have been previously characterized, the succession, inoculum sizes, frequency of infection, and growth dynamics of these symbiont species during embryogenesis remain to be described.Putative functional roles for the crop/intestinum symbionts of the leech host include aiding in digestion, provisioning essential nutrients to the host, which are lacking in the blood meal (14), and preventing the establishment of foreign microbiota (1, 15). The symbionts localized in the bladders are suspected to play a role in the recycling of host metabolic waste into ammonia (10). The digestive tract symbionts may also display nutritional syntrophy, and possibly, A. veronii primes the host''s digestive tract to enable the establishment and persistence of the obligate anaerobic Rikenella-like bacterium, thereby contributing to the selection of the future microbiota (reviewed in reference 13). This paper details the microbial colonization patterns relative to H. verbana embryogenesis using a combination of species-specific diagnostic PCR and quantitative PCR (qPCR) analyses.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号