首页 | 本学科首页   官方微博 | 高级检索  
     


Truncation of the Membrane-Spanning Domain of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Defines Elements Required for Fusion,Incorporation, and Infectivity
Authors:Ling Yue  Liang Shang  Eric Hunter
Affiliation:Yerkes National Primate Research Center,1. Department of Pathology and Laboratory Medicine,2. Emory Vaccine Center, Emory University, Atlanta, Georgia 303293.
Abstract:The membrane-spanning domain (MSD) of the envelope (Env) glycoprotein from human (HIV) and simian immunodeficiency viruses plays a key role in anchoring the Env complex into the viral membrane but also contributes to its biological function in fusion and virus entry. In HIV type 1 (HIV-1), it has been predicted to span 27 amino acids, from lysine residue 681 to arginine 707, and encompasses an internal arginine at residue 694. By examining a series of C-terminal-truncation mutants of the HIV-1 gp41 glycoprotein that substituted termination codons for amino acids 682 to 708, we show that this entire region is required for efficient viral infection of target cells. Truncation to the arginine at residue 694 resulted in an Env complex that was secreted from the cells. In contrast, a region from residues 681 to 698, which contains highly conserved hydrophobic residues and glycine motifs and extends 4 amino acids beyond 694R, can effectively anchor the protein in the membrane, allow efficient transport to the plasma membrane, and mediate wild-type levels of cell-cell fusion. However, these fusogenic truncated Env mutants are inefficiently incorporated into budding virions. Based on the analysis of these mutants, a “snorkeling” model, in which the flanking charged amino acid residues at 681 and 694 are buried in the lipid while their side chains interact with polar head groups, is proposed for the HIV-1 MSD.Human immunodeficiency virus type 1 (HIV-1) infection is initiated by fusion of the viral membrane with that of the target cell and is mediated by the viral envelope glycoprotein (Env). HIV-1 Env, a type 1 membrane-spanning glycoprotein, is a trimeric complex composed of three noncovalently linked heterodimers of gp120, the receptor-binding surface (SU) component, and gp41, the membrane-spanning, transmembrane (TM) component (12, 26, 44, 45). The gp120 and gp41 glycoproteins are synthesized as a precursor gp160 glycoprotein, which is encoded by the env gene. The gp160 precursor is cotranslationally glycosylated and, following transport to the trans-Golgi network, is cleaved into the mature products by a member of the furin family of endoproteases (45). Mature Env proteins are transported to the plasma membrane, where they are rapidly endocytosed or incorporated into virions (5, 33, 43). Recent evidence suggests that endocytosis and intracellular trafficking of Env is required for its interaction with Gag precursors and for efficient assembly into virions (20).HIV-1 Env molecules function as quasistable “spring-loaded” fusion machines. Recent studies have suggested that several regions of gp120 are reoriented following CD4 binding so that a planar “bridging sheet,” which forms the binding site for the coreceptor (CCR5 or CXCR4), can form (6, 7). Coreceptor binding is necessary for additional conformational changes in gp41 and for complete fusion (3). The gp41 monomer has three subdomains, an ectodomain, a membrane-spanning domain (MSD), and a cytoplasmic domain (39). The ectodomain of gp41, which mediates membrane fusion, is composed of a fusion peptide, two heptad repeats, and a tryptophan-rich membrane-proximal external region. Following the binding of gp120 to the CD4 receptor and the CCR5/CXCR4 coreceptor, conformational changes are induced in Env that result in the exposure of the gp41 fusion peptide (32). This peptide inserts into the target cell membrane, allowing gp41 to form a bridge between the viral and cellular membranes. Interaction of the heptad repeats to form a six-helix bundle then brings the target and viral membranes together, allowing membrane fusion to occur (24).While heptad repeat regions 1 and 2 in the N-terminal ectodomain play key roles in Env-mediated fusion by bringing the viral and cell membranes into close proximity, an important function of gp41 is to anchor the glycoprotein complex within the host-derived viral membrane (18). The precise boundaries of the HIV-1 MSD have not been clearly defined; however, the MSD is one of the most conserved regions in the gp41 sequence. Based on the initial functional studies of HIV-1, the MSD of Env was defined as a stretch of 25 predominantly hydrophobic amino acids that span residues K681 to R705 in the NL4-3 sequence (14, 16, 18). These residues were suggested to cross the viral membrane in the form of an alpha helix, the length of which is approximately equal to the theoretical depth of a membrane bilayer. A major caveat of this model is that it places a basic amino acid residue (R694) into the hydrophobic center of the lipid bilayer. While some transmembrane proteins do contain charged amino acid residues in their MSDs, it is normally considered to be energetically unfavorable without some mechanism to neutralize the charge (8, 13). Point mutation studies have yielded varying results, but in general, substitution of K681 is detrimental to fusion and infectivity while mutation of R694 or R705 has only a limited effect on these activities (16, 29). On the other hand, accumulating data argue for a different intramembrane structure of the HIV-1 MSD. Serial small deletions (3 amino acid residues) in the region between R694 and R705 showed normal cell-cell fusion, although larger deletions were detrimental (29), suggesting that, with respect to the biological functions of the Env glycoprotein, the length of this region is more important than its amino acid conservation.Previous C-terminal-truncation studies of simian immunodeficiency virus (SIV) Env (19, 41) suggested that the entire 27-amino-acid region is not required for the biological function of the protein. In the case of SIV, only the 15 apolar amino acids flanked by K689 and R705 (equivalent to K681 and R694 in HIV) and 6 additional amino acids (for a total of 23 amino acids) were required for near-wild-type (WT) fusion (19, 41). Two subsequent residues were required (total, 25 amino acids) for virus-cell entry and infectivity, while a length of 21 amino acid residues was sufficient for SIV Env to be incorporated into viral particles. These results led to a basic amino acid “snorkeling” model for the SIV MSD (41). In this model, the lysine and arginine (NL4-3 equivalents of K681 and R694) are buried in the lipid bilayer, while their long side chains are proposed to extend outward to the membrane surface and present the positively charged amino groups to the negatively charged head groups of the lipid bilayers. Applied to HIV-1 MSD, this model predicts a hydrophobic intramembrane core of only 12 amino acid residues (compared to 15 amino acid residues in the SIV MSD) between K681 and R694. The hydrophobic region C-terminal to K681 is not sufficient to effectively anchor the protein, since mutation of R694 to a stop codon yielded a nonfunctional protein that appeared to be retained in the endoplasmic reticulum (11). This contrasts with truncation experiments with the vesicular stomatitis virus (VSV) G glycoprotein, which have shown that a region of 12 hydrophobic amino acids flanked by basic residues is sufficient to anchor the protein in the membrane (1).In order to understand if the “snorkeling” model is applicable to the HIV-1 MSD, we constructed a series of nonsense mutants with HIV-1 gp41 truncated in single-amino-acid steps at the C terminus from residue R707 to residue R694. For each mutant Env, we determined the membrane stability, fusogenicity, and ability to mediate infectivity. The results of these studies suggest that the 12-residue “core” (36) plus three subsequent hydrophobic amino acids is the minimal anchor domain for HIV-1 Env, as well as the minimal sequence to mediate cell-cell fusion. In contrast to SIV Env, HIV-1 Env requires the entire 25-amino-acid region from K681 to R707 to mediate near-WT incorporation and infectivity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号