Processivity,Synergism, and Substrate Specificity of Thermobifida fusca Cel6B |
| |
Authors: | Thu V. Vuong David B. Wilson |
| |
Affiliation: | Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 |
| |
Abstract: | A relationship between processivity and synergism has not been reported for cellulases, although both characteristics are very important for hydrolysis of insoluble substrates. Mutation of two residues located in the active site tunnel of Thermobifida fusca exocellulase Cel6B increased processivity on filter paper. Surprisingly, mixtures of the Cel6B mutant enzymes and T. fusca endocellulase Cel5A did not show increased synergism or processivity, and the mutant enzyme which had the highest processivity gave the poorest synergism. This study suggests that improving exocellulase processivity might be not an effective strategy for producing improved cellulase mixtures for biomass conversion. The inverse relationship between the activities of many of the mutant enzymes with bacterial microcrystalline cellulose and their activities with carboxymethyl cellulose indicated that there are differences in the mechanisms of hydrolysis for these substrates, supporting the possibility of engineering Cel6B to target selected substrates.Cellulose is a linear homopolymer of β-1,4-linked anhydrous glucosyl residues with a degree of polymerization (DP) of up to 15,000 (5). Adjacent glucose residues in cellulose are oriented at an angle of 180° to each other, making cellobiose the basic unit of cellulose structure (5). The β-1,4-glycosidic bonds of cellulose are enzymatically hydrolyzed by three classes of cellulases. Endocellulases (EC 3.2.1.4) cleave cellulose chains internally, generating products of variable length with new chain ends, while exocellulases, also called cellobiohydrolases (EC 3.2.1.91), act from one end of a cellulose chain and processively cleave off cellobiose as the main product. The third class is the processive endocellulases, which can be produced by bacteria (2, 20).Processivity and synergism are important properties of cellulases, particularly for hydrolysis of crystalline substrates. Processivity indicates how far a cellulase molecule proceeds and hydrolyzes a substrate chain before there is dissociation. Processivity can be measured indirectly by determining the ratio of soluble products to insoluble products in filter paper assays (14, 19, 39). Although this approach might not discriminate exocellulases from highly processive endocellulases (12), it is very helpful for comparing mutants of the same enzyme (19). The processivity of some glycoside hydrolases also can be determined from the ratio of dimers to monomers in the hydrolysate (13).Four types of synergism have been demonstrated in cellulase systems: synergism between endocellulases and exocellulases, synergism between reducing- and nonreducing-end-directed exocellulases, synergism between processive endocellulases and endo- or exocellulases, and synergism between β-glucosidases and other cellulases (3). Synergism is dependent on a number of factors, including the physicochemical properties of the substrate and the ratio of the individual enzymes (10).Great effort has been focused on improving enzymatic hydrolysis of cellulases in biomass (24). However, studying biomass is difficult due to its complexity; instead, nearly pure cellulose, amorphous cellulose, or carboxymethyl cellulose (CMC) are commonly used as substrates (22).Random mutagenesis approaches and rational protein design have been used to study cellulose hydrolysis (18), to improve the activity of catalytic domains and carbohydrate-binding modules (19), and to thermostabilize cellulases (9). Increased knowledge of cellulase structures and improvements in modeling software (1) have facilitated rational protein design. The structures of five glycoside hydrolase family 6 cellulases from four microorganisms, Trichoderma reesei (23), Thermobifida fusca (26), Humicola insolens (6, 29), and Mycobacterium tuberculosis (30), have been determined. Structural analysis showed that the active sites of the exocellulases are enclosed by two long loops forming a tunnel, while the endocellulases have an open active site groove. Movement of one of these loops is important for enzymatic activity (6, 35, 37).In nature, as well as for industrial applications, mixtures of cellulase are required; therefore, a better strategy for designing individual enzymes to improve the activity of mixtures is critical. In this study, we used Cel6B, a nonreducing-end-directed, inverting exocellulase from Thermobifida fusca, a thermophilic soil bacterium, as a model cellulase to investigate the impact of improved exocellulases in mixtures with endocellulases since T. fusca Cel6B is important for achieving the maximum activity of synergistic mixtures (35). Cel6B activity is similar to that of the fungal T. reesei exocellulase Cel6A, but Cel6B has higher thermostability and a much broader pH optimum (36). Six noncatalytic residues in the active site tunnel of T. fusca exocellulase Cel6B were mutated to obtain insight into the role of these residues in processivity and substrate specificity. Two mutant enzymes that showed higher activity with filter paper and processivity were investigated further for production of oligosaccharides and synergism to analyze the relationship between processivity and synergism. |
| |
Keywords: | |
|
|