c-Src Associates with ErbB2 through an Interaction between Catalytic Domains and Confers Enhanced Transforming Potential |
| |
Authors: | Richard Marcotte Lixin Zhou Harold Kim Calvin D. Roskelly William J. Muller |
| |
Affiliation: | Goodman Cancer Center, Departments of Biochemistry,1. Medicine, McGill University, Montreal, Quebec, Canada,2. Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada,3. Department of Biophysics, University of Toronto, Toronto, Ontario, Canada4. |
| |
Abstract: | Previous studies have demonstrated that c-Src tyrosine kinase interacts specifically with ErbB2, but not with other members of the epidermal growth factor receptor (EGFR) family. To identify the site of interaction, we recently used a chimeric EGFR/ErbB2 receptor approach to show that c-Src requires the kinase region of ErbB2 for binding. Here, we demonstrate that retention of a conserved amino acid motif surrounding tyrosine 877 (referred to here as EGFRYHAD) is sufficient to confer binding to c-Src. Surprisingly the association of c-Src was not dependent on its SH2 or SH3 domain or on the phosphorylation or kinase activity of the receptor. We further show that the chimeric EGFRs that contain the Y877 motif are transforming in vitro and in vivo following ligand stimulation. Transformation was also partially dependent on sustained activation of Stat3. Finally, we demonstrate that EGFRs with mutations in the catalytic domain, originally identified in lung cancer and conferring increased sensitivity to gefitinib and erlotinib, two EGFR kinase inhibitors, gained the capacity to bind c-Src. Moreover, transformation by these EGFR mutants was inhibited by Src inhibitors regardless of their sensitivities to gefitinib and erlotinib. These observations have important implications for understanding the molecular basis for resistance to EGFR inhibitors and implicate c-Src as a critical signaling molecule in EGFR mutant-induced transformation.The epidermal growth factor receptor (EGFR) family is comprised of four members, EGFR, ErbB2, ErbB3, and ErbB4, with distinct ligand specificities, which, upon homo- or heterodimerization after ligand binding, autophosphorylate and recruit different effector proteins to specific tyrosine residues located in their cytoplasmic tails. These signaling molecules, which are either adapter molecules that recruit other kinases or kinases themselves, mediate diverse functions, such as proliferation, growth, and survival (27). There are now several pieces of evidence demonstrating that these growth factor receptors are mutated or overexpressed in a variety of different cancers, including salivary gland adenocarcinoma (44), breast cancer (47), esophageal squamous carcinoma (22), bladder cancer (58), and lung cancer (57). Accordingly, ErbB2 is overexpressed in 20 to 30% of all human breast cancer, which correlates with poor prognosis, and in 40 to 60% of ductal carcinoma in situ (19). ErbB2 is 100-fold more potent in its transforming ability than ErbB1/EGFR, although the two receptors are 85% homologous (14, 15). Breast carcinoma cells devoid of ErbB2, but not other ErbB receptor family members, are defective in cell invasion upon EGF ligand stimulation (49). In fact, ErbB2 could induce cell migration when overexpressed in cells devoid of any other ErbB receptors. In a three-dimensional cell culture system, overexpression of ErbB2, but not EGFR, disrupts mammary acinus structure by reinitiating cell proliferation, leading to an absence of lumen and disruption of tight junctions and of cell polarity, although the cells still lack invasive properties (31).Src is a nonreceptor tyrosine kinase implicated in signal transduction pathways downstream of multiple receptors, such as platelet-derived growth factor, insulin receptor, G-coupled receptors, and ErbB family receptors, where it regulates a wide variety of cellular functions that include proliferation, migration, and apoptosis (17). Src tyrosine kinase activity is sporadically increased in many cases of human cancer, including colon and breast cancer (10, 38, 52). Moreover, Src kinase activity is elevated in ErbB2-induced mammary tumors (33). Direct evidence supporting a role in mammary tumor progression derives from observations made in transgenic mice. Constitutive activation of c-Src in mammary epithelia led to frequent mammary epithelial hyperplasias, which occasionally developed into solid tumors (54). Conversely, deletion of c-Src in a mouse mammary tumor virus/polyomavirus middle T-antigen (PyMT) transgenic strain abrogates mammary tumor formation (21).c-Src is also an important player downstream of the EGFR family. Phosphorylation of several tyrosine residues within the EGFR has been demonstrated to be increased following c-Src overexpression both in vitro and in vivo, suggesting that c-Src is required for full biological response following EGF stimulation (29, 51). In addition to EGFR, c-Src specifically interacts with tyrosine-phosphorylated ErbB2 in ErbB2-induced mammary tumors. This association was further demonstrated to result in enhanced c-Src kinase activity (3, 28, 34, 35). More recently, using chimeric EGF/ErbB2 receptors, we demonstrated that c-Src specifically associates with ErbB2, but not with other ErbB family members. c-Src was demonstrated to specifically associate with the ErbB2 kinase domain (24). Moreover, the chimeric EGFR that contained the c-Src binding site was able to disrupt cell polarity and cell-cell junctions to induce epithelial cell scattering in a three-dimensional cell culture system in a MAPK-dependent manner (24).Here, we demonstrate that c-Src association with ErbB2 is conformation dependent and that the residues necessary for interaction are centered around Y877 in the kinase domain of ErbB2, an association that is further strengthened by residues located in the amino-terminal part of the kinase domain. This association was not dependent on the SH2 or SH3 domain or the kinase activity of c-Src or ErbB2. We further show that mammary epithelial cells expressing the EGFR/ErbB2 chimeric receptors that have regained the capacity to associate with c-Src have disrupted epithelial polarity that is correlated with enhanced transforming potential, an effect dependent on c-Src kinase activity and Stat3 activation. Finally, we show that mutant EGFRs isolated from lung adenocarcinomas have the capacity to associate with c-Src and that these EGFR mutants require Src kinase activity for transformation. |
| |
Keywords: | |
|
|