首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pro-apoptotic signaling in neuronal cells following iron and amyloid beta peptide neurotoxicity
Authors:Kuperstein Faina  Yavin Ephraim
Institution:Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
Abstract:In a previous report, we characterized several oxidative stress parameters during the course of amyloid beta (Abeta) peptide/Fe2+-induced apoptotic death in neuronal cells. In extending these findings, we now report a marked decrease in protein kinase C (PKC) isoforms, reduced Akt serine/threonine kinase activity, Bcl 2-associated death promoter (BAD) phosphorylation and enhanced p38 mitogen-activated protein kinase (MAPK) and caspase-9 and -3 activation, 12 h after addition of both 5 micro m Abeta and 5 micro m Fe2+. These activities reminiscent for a pro-apoptotic cellular course were blocked in the presence of the iron chelator deferroxamine. Abeta alone, increased PKC isoform levels between three- and four-fold after 12 h, enhanced Akt activity approximately eight-fold and Ser136 BAD phosphorylation two-fold, suggesting that by itself is not toxic. Fe2+ alone transiently enhanced p38 MAPK and caspase-9 and -3 enzymes indicative for cell damage, but was not sufficient to cause cell death as previously indicated. GF, a PKC inhibitor or wortmannin, a blocker of the Akt pathway enhanced Abeta/Fe2+-induced toxicity, while SB, a p38 MAPK inhibitor, prevented cell damage and apoptosis. These findings further support the hypothesis that metal ion chelation and inhibitors of pro-apoptotic kinase cascades may be beneficial for Alzheimer's disease therapy.
Keywords:Alzheimer's disease  iron  neuronal cell death  oxidative stress  PKC  signal transduction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号