首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phytochrome decay in seedlings under continuous incandescent light
Authors:R E Kendrick  C J P Spruit
Institution:(1) Laboratory of Plant Physiological Research, Agricultural University, Wageningen, The Netherlands
Abstract:Summary Under continuous high intensity incandescent light the decay of phytochrome in Amaranthus seedlings deviates from the predicted first order rate characteristic of the P fr/P total ratio maintained. This deviation takes the form of a slower decay than would be predicted and is only observed at high intensities. Experiments are presented to test the hypothesis that this reduced rate of decay is the result of a high level of phytochrome intermediates maintained under high intensity incandescent light. Accumulation of intermediates under these conditions has been demonstrated using a quasi-continuous measuring spectrophotometer. They are weakly absorbing and their concentration increases with light intensity. Although they form P fr in darkness, it is proposed that they do not decay. The model predicts that in a sample cuvette, where a light intensity gradient exists, there is more probability of a phytochrome molecule being presnet as P fr at the back of the cuvette: the region of lowest light intensity. Under conditions which favour phytochrome decay, a preferential loss of phytochrome should result at the back of the cuvette and an increasingly higher proportion of the remaining phytochrome will consequently be measured as intermediate as the experiment progresses. The results confirm the hypothesis and in addition, after 60 min incandescent light, demonstrate an accumulation of intermediates which form P fr with a longer half-life that at the begining of the experiment. Pisum epicotyl hooks show no such intermediate accumulation or preferential decay at the back of the cuvette, which is in agreement with the observed first order phytochrome decay under high intensity incandescent light. A scheme is presented explaining the results on the basis of the decay process.Abbreviations FR far-red light - R red light - P phytochrome - P fr far-red-absorbing form of P - P r red-absorbing form of P 321st communication of this Laboratory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号