aSchool of Engineering, Institute of Technology, Sligo, Ballinode, Co. Sligo, Ireland
Abstract:
The healing of wounds is a complex process and the contraction of the resulting scar can have a negative impact on the neighbouring skin. A finite element model of skin simulating the contraction of a scar and deformation of the surrounding skin is presented. The skin is represented by an orthotropic–viscoelastic constitutive law, which is validated against experimental data in the literature. A simplified experimental model of a contracting scar in real skin is also developed. The pattern and size of the wrinkles formed around the contracting scar in the finite element model compare favourably with those formed in the experimental model. The orthotropic nature of skin plays a significant role in the behaviour of skin around scars—the wrinkles have a preferential orientation that corresponds to a direction perpendicular to the Langer's lines in the skin. The pre-stress in skin (a property that is ignored in many skin models) is shown to be an important factor in wrinkle formation around scars. The proposed model can be used to analyse the suturing and closure of wounds of various shapes.