首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a wildfire
Authors:Nicole K M Vieira  William H Clements  Lynette S Guevara  Brian F Jacobs
Institution:Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, CO 80523, U.S.A.; Surface Water Quality Bureau, New Mexico Environment Department, Santa Fe, NM 87502, U.S.A.; Resources Management, Bandelier National Monument, National Park Service, Los Alamos, NM 87544, U.S.A.
Abstract:1. Wildfires are often followed by severe, sediment‐laden floods in burned catchments. In this study, we documented resistance and resilience of stream insect communities to repeated postfire flash floods in a ‘burned stream’. We employed a before‐after‐control‐impact (BACI) design, where communities in comparable reaches of a burned stream and a reference stream were sampled from 2 years before, to 6 years after, a crown wildfire in north‐central New Mexico. 2. The first 100‐year flood following the 1996 Dome wildfire reduced total insect density and taxon richness to near zero in the burned stream. Despite showing low resistance, density returned rapidly to prefire levels because of colonisation by simuliids, chironomids and the mayfly Baetis tricaudatus. In general, taxa that were generalist feeders (collectors) with strong larval dispersal dominated communities in early postfire years with repeated, moderate flash floods. 3. Taxon richness and community composition were less resilient to postfire hydrologic disturbances. Taxon richness did not recover until floods dampened 4 years after the fire. Despite hydrologic recovery, composition in the burned stream still differed from prefire and reference stream compositions after 6 years postfire. A unique assemblage, dominated by taxa with strong larval or adult dispersal, was established after flash floods abated. Specialist feeders (shredders and grazers) that were common in prefire years were reduced or absent in the postfire assemblage. 4. Community succession in the burned stream was explained by the interaction between species traits, geographic barriers to colonisation and hydrologic conditions after the fire. Comparable changes in insect density, taxon richness, community composition and trait representation were not found in the reference stream, providing strong evidence that repeated postfire flash floods shaped community responses in the burned stream.
Keywords:community recovery  flash flood  species traits  succession  wildfire
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号