首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potassium Transport in Enteromorpha intestinalis (L.) Link: II. EFFECTS OF MEDIUM COMPOSITION AND METABOLIC INHIBITORS
Authors:RITCHIE  RAYMOND J; LARKUM  A W D
Abstract:In springwater (25.5 mol m–3 Cl, 20.4 mol m–3Na+, 0.14 mol m–3 K+) Enteromorpha intestinalis couldnot survive for more than a few weeks unless provided with 0.5mol m–3 K+ in the medium or alternatively exposed to seawaterfor 1 day per week. Maintenance of a cytoplasmic K+ level ofabout 200 mol m–3 is critical for the maintenance of normalmetabolic activity. Net gains of intracellular K+ occurred whenthe plants were transferred from low-salinity to seawater; converselylarge net losses occurred when plants were transferred fromseawater to springwater. These two processes were not simplythe reverse of one another; net gain of K+ involved a largeincrease in the tracer flux both into and out of the cell butnet loss of K+ virtually halted the tracer flux into the cell.Any injury incurred by rapid salinity changes was short-lived;plants were rapidly able to adjust intracellular K1.K+). K+(orto some extent Rb+) was found to be necessary in the effluxmedium for 42K+ exchange to occur. The osmotic concentrationof the medium was also important but extracellular Na+ and Clconcentrationswere not critical. K+ influx and efflux in both springwaterand seawater were largely independent of light and were sensitivein varying degrees to a range of common metabolic inhibitorsand uncouplers. The results are best explained by the presenceof an active K+ influx, generated by an ATP-dependent K+ pumpat the plasmalemma. Key words: Enteromorpha, Potassium transport, Salinity changes, Uncouplers, Inhibitors
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号