Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts |
| |
Authors: | H. Porzig |
| |
Affiliation: | (1) Pharmakologisches Institut, Universität Bern, Switzerland |
| |
Abstract: | Summary Stationary and nonstationary state45Ca fluxes as well as Sr–Ca exchange movements were studied in energy-depleted human erythrocyte ghosts at different intra-and extracellular Ca concentrations. Influx and efflux followed the kinetics of a closed two-compartment system. The influx and efflux rate constants (kin andkout, respectively, fractions of total extra- or intracellular45Ca that move in one direction per unit time) were similar in magnitude. They decreased with increasing Ca concentration on the cisside and increased with increasing Ca concentration on the trans-side of the membrane. Hence, the fluxes in both directions were characterized by saturation kinetics and appeared to be partially caused by an exchange diffusion mechanism. In the presence of a moderate inward (up to 8mm) or outward (up to 2mm) Ca concentration gradient, kin andkout did not vary in the course of an experiment and did not differ significantly from rates which were measured under stationary state conditions. Extracellular Sr induced an outward transport of intracellular Ca against the concentration gradient (counter-transport). The resulting inward Ca concentration gradient (maximal inside-to-outside concentration ratio as 1 to 3) persisted since extra- and intracellular Sr did not equilibrate. Analogous results were obtained studying45Ca–40Ca countertransport. In net flow experiments Ca–Sr exchange proved to occur on a one-for-one basis. Ca–Sr exchange was additive to the noncoupled Ca and Sr net downhill movements. The experimental results suggest that a specific ATP-independent Ca transfer system exists in the erythrocyte membrane which acts symmetrically on the two sides of the membrane and is restricted to a tightly coupled one-for-one exchange diffusion. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|