首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of sterol structure on phospholipid phase behavior as detected by parinaric acid fluorescence spectroscopy
Authors:C Rujanavech  P A Henderson  D F Silbert
Abstract:Phospholipid-sterol interactions were investigated using parinaric acid fluorescence spectroscopy. Cholesterol and cholesterol analogues which were modified in the sterol nucleus or side chain were added at 50 mol % to multilamellar vesicles of model phospholipids selected to be representative of major components in an LM cell plasma membrane. These included sphingomyelins and saturated and monounsaturated phosphatidylcholines and phosphatidylethanolamines. Based on the changes in cis-parinaric acid steady-state fluorescence polarization observed with addition of sterol, 50 mol % cholesterol abolished the phase transition of all the model phospholipids. Dihydrocholesterol and trans-22-dehydrocholesterol behaved like cholesterol in the two systems studied. 24-Methylcholesterols interacted well with all phospholipids except phosphatidylethanolamine which contained an unsaturated fatty acid. 24-Alkyl,trans-22-dehydrocholesterols abolished the phase transition in only two systems: sphingomyelins and phosphatidylcholines possessing relatively short saturated acyl chains. Since steady-state anisotropy is a function of fluorescence lifetime, rotational diffusion rates, and limiting anisotropy, we determined these parameters for two of the phospholipid systems. The results show that steady-state anisotropy values for phospholipid-sterol interactions correlate closely with limiting anisotropy and to a lesser extent with rotational relaxation time. The behavior of the sterols in the model phospholipids are used to interpret 1) fluorescence polarization measurements made with phospholipids extracted from LM cell plasma membranes, and 2) changes in membrane lipid composition which accompany growth of LM cells on various sterols.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号