首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A theoretical and experimental evaluation of a novel radial-flow hollow fiber reactor for mammalian cell culture
Authors:L G Cima  H W Blanch  C R Wilke
Institution:(1) Department of Chemical Engineering, University of California of Berkeley, 94720 Berkeley, Cal., USA
Abstract:A hollow fiber perfusion reactor constructed from pairs of concentric fibers forming a thin annular space is analyzed theoretically in terms of mass transfer resistances, and is shown experimentally to support the growth of an anchorage-dependent cell line in high-density culture. Hollow fiber perfusion reactors described in the literature typically employ a perfusion pathlength much greater than the distance that could be supported by diffusion alone, and analyses of these reactors typically incorporate the assumption of uniform perfusion throughout the cell mass despite many reported observations of inhomogeneous cell growth in perfusion reactors. The mathematical model developed for the annular reactor predicts that the metabolism of oxygen, carbon substrates, and proteins by anchorage-dependent cells can be supported by the reactor even in the absence of perfusion. The implications of nonuniform cell growth in perfusion reactors in general is discussed in terms of nutrient distribution. In the second part of the paper, the growth and metabolism of the mouse adrenal tumor line Y-1 in flask culture and in the annular reactor are compared. The reactor is shown to be a promising means for culturing anchorage-dependent cells at high density.List of Symbols c mol/dm3 substrate concentration - D mm2/s effective diffusivity of substrate in the membrane - D tm2/s effective diffusivity of substrate in the cell region - L pm2s/kg hydraulic permeability of fiber - Pe m Peclet number for membrane transport, ngr wR1/D m - Pe t Peclet number for transport through cell mass, vngr wR2/D t - Q mol/m3s zero-order consumption rate of substrate per unit volume of cell mass - r m radial distance from centerline of fiber lumen - R 1, R 2 m inner and outer radii of inner annular fiber (Fig. 1) - R 3, 4 m inner and outer radii of outer annular fiber (Fig. 1) - v wm/s fluid velocity through the fiber wall at R 1 - agr fraction of shell side filled with cells - beta dimensionless radial distance, R 3/R1 - delta dimensionless radial distance, R 2/R 1 - chi cm2 hydraulic conductivity - mgr viscosity - phgr 2, PSgr Thiele modulus - theta dimensionless radial distance, R 4/R 1
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号