首页 | 本学科首页   官方微博 | 高级检索  
     


A novel workflow combining plaque imaging,plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption
Authors:Regent Lee  Roman Fischer  Philip D. Charles  David Adlam  Alessandro Valli  Katalin Di Gleria  Rajesh K. Kharbanda  Robin P. Choudhury  Charalambos Antoniades  Benedikt M. Kessler  Keith M. Channon
Affiliation:1.Division of Cardiovascular Medicine,University of Oxford,Oxford,UK;2.Acute Vascular Imaging Centre, Radcliffe Department of Medicine,University of Oxford,Oxford,UK;3.Target Discovery Institute, Nuffield Department of Medicine,University of Oxford,Oxford,UK;4.National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital,Oxford University Hospitals NHS Foundation Trust,Oxford,UK
Abstract:

Background

Atherosclerotic plaque rupture is the culprit event which underpins most acute vascular syndromes such as acute myocardial infarction. Novel biomarkers of plaque rupture could improve biological understanding and clinical management of patients presenting with possible acute vascular syndromes but such biomarker(s) remain elusive. Investigation of biomarkers in the context of de novo plaque rupture in humans is confounded by the inability to attribute the plaque rupture as the source of biomarker release, as plaque ruptures are typically associated with prompt down-stream events of myocardial necrosis and systemic inflammation.

Methods

We developed a novel approach to identify potential biomarkers of plaque rupture by integrating plaque imaging, using optical coherence tomography, with both plaque and plasma proteomic analysis in a human model of angioplasty-induced plaque disruption.

Results

We compared two pairs of coronary plaque debris, captured by a FilterWire Device, and their corresponding control samples and found matrix metalloproteinase 9 (MMP9) to be significantly enriched in plaque. Plaque contents, as defined by optical coherence tomography, affect the systemic changes of MMP9. Disruption of lipid-rich plaque led to prompt elevation of plasma MMP9, whereas disruption of non-lipid-rich plaque resulted in delayed elevation of plasma MMP9. Systemic MMP9 elevation is independent of the associated myocardial necrosis and systemic inflammation (measured by Troponin I and C-reactive protein, respectively). This information guided the selection of a subset of subjects of for further label free proteomics analysis by liquid chromatography tandem mass spectrometry (LC–MS/MS). We discovered five novel, plaque-enriched proteins (lipopolysaccharide binding protein, Annexin A5, eukaryotic translocation initiation factor, syntaxin 11, cytochrome B5 reductase 3) to be significantly elevated in systemic circulation at 5 min after plaque disruption.

Conclusion

This novel approach for biomarker discovery in human coronary artery plaque disruption can identify new biomarkers related to human coronary artery plaque composition and disruption.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号