首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of selenite on O2 consumption, glutathione oxidation and NADPH levels in isolated hepatocytes and the role of redox changes in selenite toxicity
Authors:Irene Anundi  Annika Sthl  Johan Hgberg
Institution:

a Department of Forensic Medicine, Karolinska Institutet, Box 60400, S-104 01, Stockholm, Sweden

b Division of Occupational Toxicology, Research Department, National Board of Occupational Safety and Health, P.O. Box, S-171 84, Solna, Sweden

Abstract:Isolated hepatocytes incubated with selenite (30–100 μM) exhibited changes in the glutathione redox system as shown by an increase in O2 consumption, oxidation of glutathione and loss of NADPH. Selenite (50 μM) raised O2 consumption within the 1 h and induced an partial depletion of thiols with a concomitant increase in oxidized glutathione, as well as a decrease in NADPH levels within 2 h. With 100 μM selenite more pronounced effects were obtained such as a total depletion of thiols. This concentration of selenite also lysed cells within 3 h. Arsenite, HgCl2 and KCN prevented the increase in O2 uptake, counteracted loss of thiols and delayed selenite induced lysis. p-Tert-butylbenzoic acid, an inhibitor of gluconeogenesis, decreased selenite dependent O2 consumption and potentiated the effect on NADPH levels as well as the toxic effect. Finally, methionine further enhanced O2 consumption by selenite and also delayed loss of thiols and potentiated selenite toxicity. These results indicated that selenite catalyzed a reduction of O2 in glutathione dependent redox cycles with NADPH as an electron donor. With subtoxic concentrations of selenite (50 μM) there were indications that O2 reduction was terminated by selenite biotransformation to methylated metabolites. With toxic concentrations of selenite (100 μM) it appeared that O2 reduction was eventually limited by the capacity of the cell to regenerate NADPH. It is suggested that a depletion of NADPH mediated the observed cytotoxicity of selenite.
Keywords:Selenite  Hepatocytes  Oxygen consumption  Glutathione  Redox changes  Toxicity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号