首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity
Authors:Grimm Sebastian  Salahshour Samaneh  Nygren Per-Åke
Institution:Division of Molecular Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden.
Abstract:The use of library technologies for the generation of affinity proteins often includes an affinity maturation step, based on the construction of secondary libraries from which second generation variants with improved affinities are selected. Here, we describe for the first time the affinity maturation of affibody molecules based on step-wise in vitro molecular evolution, involving cycles of error-prone PCR (epPCR) amplification for the introduction of diversity over the entire 58-residue three-helix bundle structure and ribosome display (RD) for the selection of improved variants. The model affibody molecule for the process was Z(RAF322), binding with a 1.9μm equilibrium dissociation constant (K(D)) to human Raf-1 (hRaf-1), a protein kinase of central importance in the MAPK/ERK proliferation pathway. The molecular evolution process was followed on both gene and protein levels via DNA sequencing and a biosensor-based binding analysis of pools of selected variants. After two cycles of diversification and selection, a significant increase in binding response of selected pools was seen. DNA sequencing showed that a dominant alanine to valine substitution had been effectively enriched, and was found in 83% of all selected clones, either alone or in combination with other enriched substitutions. The evolution procedure resulted in variants showing up to 26-fold increases in affinity to the hRaf-1 target. Noteworthy, for the two variants showing the highest affinities, substitutions were also found in affibody framework positions, corresponding to regions of the protein domain not addressed by traditional affibody molecule affinity maturation strategies. Interestingly, thermal melting point (T(m)) analyses showed that an increased affinity could be associated with both higher and lower T(m) values. All investigated variants showed excellent refolding properties and selective binding to hRaf-1, as analysed using a multiplexed bead-based binding assay, making them potentially valuable affinity reagents for cell biology studies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号