Abstract: | A dynamical model for an N-terminal fragment of the human CD4 protein has been determined by computer simulation. The protein has been studied both in vacuo and in solution. Data from both simulations agree moderately well with each other and with the crystal structure. All elements of secondary structure were retained during simulation. Point mutation and sequence replacement studies have shown that a loop in CD4, residues 40–52, is involved in binding with gp120, the human immunodeficiency virus surface glycoprotein.1,2 Our results show that the gp120-binding loop and a few regions which bind to monoclonal antibodies and class II MHC molecules are the most highly motile areas of the protein. These results are consistent with the suggestion that CD4 binds to target molecules by using induced-fit contacts. © 1994 John Wiley & Sons, Inc. |