首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of the inter-spike times of neurons receiving randomly arriving post-synaptik potentials
Authors:Henry C Tuckwell
Institution:1. Department of Biophysics and Theoretical Biology, University of Chicago, Chicago, Illinois, USA
Abstract:Stein's model for a neuron receiving randomly arriving post-synaptic potentials is studied from an analytic viewpoint, using some recent results in the theory of first passage times for temporally homogeneous Markov processes. The case when the only input is excitatory can be treated exactly. It is shown that the moments of the firing time are guaranteed to be finite so that the differential-difference equation for the expectation (and higher moments) of the time for the membrane potential to first reach threshold from resting level can be written down. Analytic solutions are obtained in a number of cases with main emphasis on the case when the threshold is twice the epsp magnitude. An invariance principie is formulated wherein at a given mean input frequency and for a given decay parameter, the distribution of firing times depends only on the ratio of threshld to epsp magnitude. For the case where this ratio is two, the variation in the mean discharge rate is obtained as a function of mean input frequency. The results are compared with the experimental data for the Poisson monosynaptic excitation of cat motoneurons by Redmanet al. Agreement between theoretical and experimental values is excellent at input frequencies near 102 sec-1, and theory underestimates the firing rate below that input frequency. Reasons for the discrepancy are discussed at length including the uncertainties in the neuronal parameters and the dependence of epsp magnitude on mean input frequency. The problem of including an inhibitory input process together with excitation is treated by an approximation procedure when the inhibition is considerably weaker than the excitation. At the input frequency investigated it is shown that when inhibition “half as weak” as the excitation occurs, the mean discharge frequency is approximately halved. In the final section a method of estimating neuronal parameters from the moments of the experimental inter-spike time distribution is outlined.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号