首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oxidative responses of resistant and susceptible cereal leaves to symptomatic and nonsymptomatic cereal aphid (Hemiptera: Aphididae) feeding.
Authors:X Ni  S S Quisenberry  T Heng-Moss  J Markwell  G Sarath  R Klucas  F Baxendale
Institution:Department of Entomology, Montana State University, Bozeman 59717, USA.
Abstract:The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant 'Halt' wheat (Triticum aestivum L.) and susceptible 'Morex' barley (Hordeum vulgare L.), but not on susceptible 'Arapahoe' and resistant 'Border' oat (Avena sativa L.). D. noxia-feeding elicited a ninefold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley's susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号