首页 | 本学科首页   官方微博 | 高级检索  
     


Coupling plowing of cartilage explants with gene expression in models for synovial joints
Authors:Correro-Shahgaldian Maria Rita  Colombo Vera  Spencer Nicholas D  Weber Franz E  Imfeld Thomas  Gallo Luigi M
Affiliation:Clinic of Masticatory Disorders, Removable Prosthodontics and Special Care, Center of Dental Medicine, University of Zurich Plattenstrasse 11 CH-8032 Zurich, Switzerland.
Abstract:Articular cartilage undergoes complex loading modalities generally including sliding, rolling and plowing (i.e. the compression by a condyle normally to the tissue surface under simultaneously tangential displacement, thus generating a tractional force due to tissue deformation). Although in in vivo studies it was shown that excessive plowing can lead to osteoarthritis, little quantitative experimental work on this loading modality and its mechanobiological effects is available in the literature. Therefore, a rolling/plowing explant test system has been developed to study the effect on pristine cartilage of plowing at different perpendicular forces. Cartilage strips harvested from bovine nasal septa of 12-months-old calves were subjected for 2h to a plowing-regime with indenter normal force of 50 or 100 N and a sliding speed of 10 mm s(-1). 50 N produced a tractional force of 1.2±0.3N, whereas 100 N generated a tractional force of 8.0±1.4N. Furthermore, quantitative-real-time polymerase chain reaction experiments showed that TIMP-1 was 2.5x up-regulated after 50 N plowing and 2x after 100 N plowing, indicating an ongoing remodeling process. The expression of collagen type-I was not affected after 50 N plowing but it was up-regulated (6.6x) after 100 N plowing, suggesting a possible progression to an injury stage of the cartilage, as previously reported in cartilage of osteoarthritic patients. We conclude that plowing as performed by our mimetic system at the chosen experimental parameters induces changes in gene expression depending on the tractional force, which, in turn, relates to the applied normal force.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号