首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Determination of synthesis, recycling and body mass of glucose in rats and rabbits in vivo with 3H- and 14C-labelled glucose
Authors:Joseph Katz  Arnold Dunn  Maymie Chenoweth  and Sybil Golden
Institution:Cedars–Sinai Research Medical Center, Los Angeles, Calif. 90054, U.S.A.;Department of Biological Sciences, University of Southern California, Los Angeles, Calif. 90006, U.S.A.
Abstract:1. Glucose labelled with (3)H in position 2 and uniformly with (14)C was administered simultaneously to rabbits and rats either as a single injection or by continuous infusion. Plasma glucose specific radioactivity and the yield of (3)H in the plasma water were monitored. 2. The rates of synthesis, recycling of carbon and total body mass of glucose were calculated, without assuming a multicompartmental model and without fitting data by exponential expressions. 3. The rate of synthesis of glucose in starved-overnight rabbits was 4mg/min per kg (range 3-4.5mg/min per kg) and 25-35% of the glucose carbon was recycled. The mass of total body glucose in starved rabbits was 290mg/kg (range 220-390mg/kg). About one-third of the total body glucose equilibrates nearly instantaneously with plasma glucose. 4. In rats starved overnight, glucose synthesis was about 10mg/min per kg and recycling of carbon ranged from 30-40%. Total body mass (per kg body weight) is similar to that in rabbits. 5. The activity in plasma water after injection of 2-(3)H]glucose was determined. The initial rate of (3)H(2)O formation is rapid, indicating that the major site of glucose catabolism is in the rapidly mixing pool. The curve of total body glucose radioactivity was obtained from the (3)H(2)O yield, and total mass of glucose was calculated. This agrees with that obtained from the (3)H specific-radioactivity curve.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号