A small GTP-binding protein (G protein) recognized by smg p25A GDP dissociation inhibitor (GDI) in human platelet membranes and GDI for this small G protein in human platelet cytosol |
| |
Authors: | H Fujioka A Kikuchi Y Yoshida S Kuroda Y Takai |
| |
Affiliation: | Department of Biochemistry, Kobe University School of Medicine, Japan. |
| |
Abstract: | We have recently purified from bovine brain cytosol a novel type of regulatory protein for smg p25A, named smg p25A GDP dissociation inhibitor (GDI), that regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. This smg p25A GDI is inactive for other ras p21/ras p21-like small GTP-binding proteins (G proteins) including c-Ha-ras p21, smg p21, rhoA p21 and rhoB p20. In human platelet membranes, smg p25A was not detected but a G protein with an apparent Mr value of 24,000 (24KG) was recognized by smg p25A GDI and the dissociation of GDP from and the binding of GTP to 24KG were inhibited by smg p25A GDI. The doses of smg p25A GDI necessary for these activities for both 24KG and smg p25A were the same. This 24KG was not recognized by an anti-smg p25A monoclonal antibody. The GDI activity for human platelet 24KG and smg p25A was detected in human platelet cytosol. This human platelet GDI was recognized by an anti-smg p25A GDI polyclonal antibody. These results indicate that there is a 24KG-24KG GDI system similar to a smg p25A-smg p25A GDI system in human platelets. |
| |
Keywords: | |
|
|