首页 | 本学科首页   官方微博 | 高级检索  
     


Allocation of biomass and photoassimilates in juvenile plants of six Patagonian species in response to five water supply regimes
Authors:Lucrecia Cella Pizarro   Alejandro J. Bisigato
Affiliation:1Centro Nacional Patagónico (CONICET), Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina;2Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3700, U9120ACX Puerto Madryn, Chubut, Argentina
Abstract:

Background and Aims

The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient.

Methods

One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect.

Key Results

Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis.

Conclusions

Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.
Keywords:Drought   growth–defence trade-offs   Larrea divaricata   Jarava speciosa   Chuquiraga erinacea   Prosopis alpataco   Bougainvillea spinosa   Grindelia chiloensis   allocation   nitrogen   phenolics   total non-structural carbohydrates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号