首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of adjuvants on immune response and protective immunity elicited by recombinant Hsp60 (GroEL) of Salmonella typhi against S. typhi infection
Authors:Anju Bansal  Piyush Kumar Paliwal  Sarada S K Sagi  Mustoori Sairam
Institution:1. Genetic Engineering Group, Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
2. National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune, Maharashtra, India
3. Biological E Ltd, Hyderabad, Andhra Pradesh, India
Abstract:Heat shock proteins (Hsps) have been reported to be dominant antigens for the host immune response to various pathogens and thus, have great potential for use in vaccination. In the present study, we evaluated the immunogenicity and protective efficacy of GroEL of Salmonella enterica serovar Typhi against lethal infection by S. typhi Ty2 in mice with or without adjuvants. Anti GroEL–IgG titers were significantly higher in mice immunized with either GroEL-alone or in combination with alum/Complete Freund’s adjuvant (CFA) as compared to the control. Analysis of antibody isotypes suggested predominance of Th2 type immune response in GroEL + alum immunized animals as revealed by higher IgG1/IgG2a ratio. Whereas, immunization of animals with GroEL + CFA or GroEL-alone shifted the immune response toward Th1 phenotype. Mice immunized with GroEL with or without adjuvants, showed a significant increase in lymphocyte proliferation and cytokine levels. The animals immunized with GroEL + CFA or GroEL-alone showed higher IFN-γ and IL-2 levels than alum group, indicating Th1 response whereas IL-4 levels (Th2 response) were found to be highest in alum group as compared to other two immunized groups. Immunization of mice with GroEL-alone, GroEL + alum, and GroEL + CFA provided 70, 50 and 80% protection, respectively, against lethal challenge by S. typhi in mice. The differences in the percentage protection among various groups were attributed to the differences in the immune responses generated by respective immunizations. The present study shows that GroEL forms an ideal candidate molecule to develop a recombinant protein based vaccine against human typhoid.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号