Comparison of the neuromuscular systems among actinotroch larvae: systematic and evolutionary implications |
| |
Authors: | Santagata Scott Zimmer Russel L |
| |
Affiliation: | UCLA, Los Angeles, CA 90089, USA |
| |
Abstract: | A comparative analysis of the larval and presumptive juvenile neuromuscular systems among actinotroch larvae was performed using confocal laser microscopy with probes for F-actin and serotonin. Currently, there are two main categories of larval nervous systems based on the origin of the nerve fibers that innervate the larval tentacles. Characteristics of the serotonergic cells of the larval apical ganglion and juvenile nervous system have remained relatively conserved, but the structure of the secondary (hood) sense organ and the juvenile tentacles has diversified among species. Differences in larval musculature are mainly associated with differences in hood morphology. The presumptive, juvenile neuromuscular system is either integrated or separated from that of the larva based on the origin of the juvenile tentacles. Among species, the juvenile tentacles are made by remodeling the larval tentacles, developed from a basal tentacular thickening, or developed as a completely separate set in the larva. Differentiation of the neuromuscular structures of the juvenile tentacles is more diverse than their outward morphological characteristics would suggest. Importance of these larval characters is discussed in terms of current problems that exist within phoronid systematics. Evolutionary implications of these morphological characters are discussed among the phoronids, brachiopods, and related bilaterians. Overall, the integration or separation of larval and juvenile neuromuscular characters may yield insights into the evolution of lophotrochozoan body plans. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|