Abstract: | Maltoporin, a protein spanning Escherichia coli outer membranes, modifies electrical conductance of membranes due to its channel-forming properties. This observation was made by conductance measurements across planar bilayers which were derived from unextracted, isolated outer membrane vesicles using a porin-deficient E. coli strain. Alternatively, proteoliposomes reconstituted with detergent-solubilized homogeneous maltoporin and phospholipids were used. With either membrane preparation, channel conductance was observed, although no discrete conductance levels were detected. The presence of lipopolysaccharide, a bacterial glycolipid, was not required, nor did it affect channel activity. In the presence of the water-soluble periplasmic maltose-binding protein, conductance fluctuations occurred in discrete steps, demonstrating opening and closing events of channels. Multiple step sizes (1/3, 2/3 and 1 ns in 1 M KCl) in single channel traces suggest cooperative opening and closing of up to three channels. The action of maltose-binding protein is highly asymmetrical, and its affinity to maltoporin is very high (KD = 1.5 X 10(-7) M). Association of maltose-binding protein to maltoporin shifts, for a given polarity, the equilibrium between open and closed states in favour of closed states. This result matches earlier in vivo studies, and supports the physiological significance of the observations made. |