首页 | 本学科首页   官方微博 | 高级检索  
     


Affinity labeling of spinach phosphoribulokinase subsequent toS-methylation at Cys16
Authors:Michael A. Porter   Mark D. Potter  Fred C. Hartman
Affiliation:(1) University of Tennessee-Oak Ridge Graduate School of Biomedical Sciences, 37831 Oak Ridge, Tennessee;(2) Protein Engineering and Molecular Mutagenesis Program of the Biology Division, Oak Ridge National Laboratory, 37831 Oak Ridge, Tennessee
Abstract:The chloroplast enzyme phosphoribulokinase is reversibly deactivated by oxidation of Cys16 and Cys55 to a disulfide. Although not required for catalysis, Cys16 is an active-site residue positioned at the nucleotide-binding domain (Porter and Hartman, 1988). The hyperreactivity of Cys16 has heretofore limited further active-site characterization by chemical modification. To overcome this limitation, the partially active enzyme,S-methylated at Cys16, has been probed with a potential affinity reagent. Treatment of methylated enzyme with bromoacetylethanolamine phosphate results in essentially complete loss of catalytic activity. Inactivation follows pseudo-first-order kinetics and exhibits a rate saturation with an apparentKd of 3–4 mM. ATP, but not ribulose 5-phosphate, affords substantial protection. Complete inactivation correlates with incorporation of 1 mol of [14C]reagent per mole of enzyme subunit. Amino acid analysis of the [14C]-labeled enzyme demonstrates that only cysteine is modified, and mapping of tryptic digests shows that Cys55 is a major site of alkylation. These results indicate that Cys55 is also located in the ATP-binding domain of the active-site.
Keywords:Phosphoribulokinase  affinity labeling  bromoacetylethanolamine phosphate
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号