首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanism of proton transfer inhibition by Cd(2+) binding to bacterial reaction centers: determination of the pK(A) of functionally important histidine residues
Authors:Paddock M L  Sagle L  Tehrani A  Beatty J T  Feher G  Okamura M Y
Affiliation:Department of Physics 0319, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
Abstract:The bacterial photosynthetic reaction center (RC) uses light energy to catalyze the reduction of a bound quinone molecule Q(B) to quinol Q(B)H(2). In RCs from Rhodobacter sphaeroides the protons involved in this process come from the cytoplasm and travel through pathways that involve His-H126 and His-H128 located near the proton entry point. In this study, we measured the pH dependence from 4.5 to 8.5 of the binding of the proton transfer inhibitor Cd(2+), which ligates to these surface His in the RC and inhibits proton-coupled electron transfer. At pH <6, the negative slope of the logarithm of the dissociation constant, K(D), versus pH approaches 2, indicating that, upon binding of Cd(2+), two protons are displaced; i.e., the binding is electrostatically compensated. At pH >7, K(D) becomes essentially independent of pH. A theoretical fit to the data over the entire pH range required two protons with pK(A) values of 6.8 and 6.3 (+/-0.5). To assess the contribution of His-H126 and His-H128 to the observed pH dependence, K(D) was measured in mutant RCs that lack the imidazole group of His-H126 or His-H128 (His --> Ala). In both mutant RCs, K(D) was approximately pH independent, showing that Cd(2+) does not displace protons upon binding in the mutant RCs, in contrast to the native RC in which His-H126 and His-H128 are the predominant contributors to the observed pH dependence of K(D). Thus, Cd(2+) inhibits RC function by binding to functionally important histidines.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号